

2016 Marking Scheme

Grade	Mark R	equired	° andidatas achievina anada
Awarded	(/ ₁₂₀)	%	% candidates achieving grade
A	86+	71.7%	29.6%
В	74+	61.7%	25.2%
С	62+	51.7%	21.3%
D	56+	46.7%	8.8%
No award	<56	<46.7%	15.1%

Section:	Multiple Cho	oice	Extended	Answer	Assignr	nent
Average Mark:	13.0	/20	48.5	/80	13.2	/20

	20)16	Higher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	D	55	 ☑A (Na⁺)₂S²⁻ electron arrangements: Na⁺ 2,8 and S²⁻ 2,8,8 ☑B Mg²⁺(Cl⁻)₂ electron arrangements: Mg²⁺ 2,8 and Cl⁻ 2,8,8 ☑C K⁺Br⁻ electron arrangements: K⁺ 2,8,8 and Br⁻ 2,8,18,8 ☑D Ca²⁺(Cl⁻)₂ electron arrangements: Ca²⁺ 2,8,8 and Cl⁻ 2,8,8
2	A	80	\square A H has the δ + charge and Cl has the δ - charge as it has higher electronegativity \blacksquare B Electrons will be closer to the more electronegative element (H 2.2 and Cl 3.0) \blacksquare C Chlorine is the more electronegative element and has the δ - charge \blacksquare D Electrons will be closer to the more electronegative element (H 2.2 and Cl 3.0)
3	A	83	 ☑A Electronegativity difference CsF₂ = 4.0-0.8 = 3.2 ∴ greatest ionic character ☑B Electronegativity difference CsI₂ = 2.6-0.8 = 1.8 ☑C Electronegativity difference NaF = 4.0-0.9 = 3.1 ☑D Electronegativity difference NaI = 2.6-0.9 = 1.7 ∴ least ionic character
4	В	81	Enthalpy change is the same for catalysed and uncatalysed reactions. Enthalpy change is measure from R to P = 50 - 100 = -50 kJ mol ⁻¹ Enthalpy change must be negative as diagram is exothermic type (downhill overall)
5	В	93	Formula of limonene molecule = $C_{10}H_{16}$ Each isoprene unit contains 5 carbons \therefore 2 isoprene units combined to make limonene
6	A	66	☑A molecules has a lack of polar groups so stays in food when boiled in polar water ☑B molecule has a polar -OH hydroxyl group and likely to enter boiling water ☑C molecule has a polar -OH hydroxyl group and likely to enter boiling water ☑D molecule has a polar -COOH carboxyl group and likely to enter boiling water
7	С	75	 A Hydrolysis: vegetable oil would hydrolyses into glycerol and three fatty acids B Condensation: vegetable oil made by condensation from glycerol & 3 fatty acids C Hydrogenation: hydrogen added across C=C bonds making saturated chains D Dehydrogenation: removing hydrogen would make more C=C bonds (stays oil)
8	D	71	 ☑A reaction rate falls at temperature above 37°C ☑B reaction rate rises not falls at temperatures from 0°C to 37°C ☑C reaction rate falls at temperature above 37°C ☑D Enzymes have an optimum temperature and decrease in activity as temp rises
9	С	81	 A Fat is a solid triester molecule made from condensation of glycerol and 3 fatty acids B Oil is a liquid triester molecule made from condensation of glycerol and 3 fatty acids C Soap is made from neutralisation of a fatty acid with an alkali O Glycerol (propane-1,2,3-triol) is a trihydric alcohol with three -OH groups
10	В	40	⊠A the emulsifier produced and the edible oil are both esters to start with. ☑B glycerol reacts with edible oil by taking a fatty acid chain from the oil. ☑C fatty acids are produced in the reaction of making an emulsifier ☑D amino acids are the building blocks of making protein
11	В	61	■ A $Cu^{2+} + e^- \rightarrow Cu^+$ is the reduction reaction in Benedict's Solution ■ B Ag ⁺ + e ⁻ → Ag ⁺ is the reduction reaction in Tollen's Reagent ■ C $Cr_2O_7^{2-}+14H^++6e^-\rightarrow 2Cr^{3+}+7H_2O$ is the reduction reaction in acidified dichromate ■ D MnO4 ⁻ +8H ⁺ +5e ⁻ →Mn ²⁺ +4H ₂ O is the reduction reaction in acidified permanganate
12	С	80	 ☑ A numbering system used does not give functional group (C=O) the lowest number ☑ B wrong functional group: -al is aldehyde group (-CHO) not a ketone group ☑ C 5 carbon ketone with functional group on C₂ and methyl groups on C₃ and C₄ ☑ D wrong functional group: -al is aldehyde group (-CHO) not a ketone group

			Available nitric acid: n o. of mol = volume x concentration = 0.2 litres x 0.1 mol t^{-1} = 0.02 mol						
			$CaCO_3 + 2HNO_2 \longrightarrow Ca(NO_3)_2 + H_2O + CO_2$						
	_		1mol2mol1mol1mol1mol0.01mol0.02mol0.01mol0.01mol0.01mol						
13	С	31	gfm $CaCO_3 = (1\times40.1)+(1\times12)+(3\times16) = 40.1+12+48 = 100.1g$. no. of mol= mass/gfm = $^2/_{100.1} = 0.020$ mol						
			Im Ca(NO3)2 - (1x+0.1)+(2x1+)+(0x10) - 40.1+20+90 - 104.1g						
			B All nitric acid is used up in the reaction as nitric acid is the limiting reactant						
			☑C 0.01mol Ca(NO ₃) ₂ produced ∴ mass = no. of mol × gfm = 0.01 × 164.1 = 1.64g						
			D Volume = n o. of mol × M olar Volume = 0.01mol × 24 litres mol ⁻¹ = 0.24litres = 240cm ³						
	-		EA carbon must be in the gaseous state in this reaction						
14	В	51	S 4 moi C-F bonds are broken :: Total enthalpy change = 4x+464 = +1936kJ moi						
	_	-	Not of a point of a point of the part of the point of the point of the point of the point of the part of the point of the						
			🗷 A At equilibrium, rate of forward reaction = rate of reverse reaction						
15	C	66	B At equilibrium, concentration of reactants are constant (but not equal)						
15	C	00	☑C At equilibrium, concentration of reactants are constant						
			A crivation Energies for forward and reverse reactions are never equal						
		75	B Enthalpy of combustion must be complete combustion (no carbon monoxide is formed)						
16	A	/5	Not service of the se						
			ID Enthalpy of combustion must be complete combustion (no carbon monoxide is formed)						
			A oxidising agent is reduced itself not oxidised						
17	C	68	B oxidising agent is reduced itself not oxidised						
	Ŭ	00	D oxidising agent is reduced itself oxidising agent gains electrons						
			<u>Step 1</u> : Write down main species in reaction						
			$\overline{ClO_3}$ $\rightarrow Cl_2$						
		D 49	Step 2: Balance all atoms other than O or H						
	•		$2CIO_3^{-1} \rightarrow CI_2^{-1}$ Step 3: Balance O atoms by adding H ₂ O to the other side						
18	D		$\frac{Clo_3}{2ClO_3} \rightarrow Cl_2 + 6H_2O$						
			<u>Step 4</u> : Balance H atoms by adding H [*] to the other side						
			$2CIO_3^- + 12H^+ \longrightarrow CI_2 + 6H_2O$						
			$2C O_3^-$ + $12H^+$ + $10e^- \rightarrow C _2$ + $6H_2O$						
			$2I^{-} \rightarrow I_{2} + 2e^{-}$ is an oxidation reaction (reverse of reduction reaction in data booklet)						
			Reduction reaction must be below this reaction in the data booklet to proceed						
10		Λ1	$\mathbb{E}A \ SO_4^{2-} + 2H^+ + 2e^- \rightarrow SO_3^{2-} + H_2O$ (reduction reaction is above iodine in data booklet)						
19	U	41	$\boxtimes B SO_3^{2^-} + H_2O \rightarrow SO_4^{2^-} + 2H^+ + 2e^- \text{ (not a reduction reaction)}$						
			$\mathbb{E} C \ 2Cr^{3^{+}} + 7H_2O \rightarrow Cr_2O7^{c^{-}} + 14H^{+} + 6e^{-} (not a reduction reaction)$						
			$ \blacksquare \cup Cr_2 \cup 7^- + 14H + be \rightarrow 2Cr^- + /H_2 \cup (reduction reaction & below iddine in data booklet) $						
			B using bottom of meniscus improves the reading of volume in burette at end-point						
20	A	A 54	EC repeating titrations improves reliability but not ability to precisely determine end-point						
			D carrying out rough titration allows the region of the end-point to be worked out						

2	2016 Higher Chemistry Marking Scheme									
Long Qu	Answer	Reasoning								
1a	Increased successful collisions at higher temp	At a higher temperature, the average kinetic energy of particles increases. Number of collisions will increase and the number of collisions with energy greater than the activation energy will increase, increasing the reaction rate.								
1b(i)	Answer to include one of:	thistle funnel syringe H ₂ O ₂ MnO ₂ thistle funnel H ₂ O ₂ MnO ₂ thistle H ₂ O ₂ thistle H ₂ O ₂ MnO ₂								
1b(ii)	3.7	volume of oxygen produced = volume strength x volume of hydrogen produced = volume strength x 20cm ³ volume strength = $\frac{volume of oxygen produced}{volume of hydrogen peroxide} = \frac{74cm^3}{20cm^3} = 3.7$								
1c	80 <i>s</i>	From graph: when concentration = 0.6mol l ⁻¹ the relative rate = 0.0125 s ⁻¹ time = $\frac{1}{\text{relative rate}}$ = $\frac{1}{0.0125s^{-1}}$ = 80s								
2a(i)	Nuclear charge increases <u>or</u> number of protons in nucleus increases	As the nuclear charge increases (due to additional protons in the nucleus) the same outer shell of electrons undergoes a greater pull from the nucleus which causes the covalent radius/atomic size to decrease.								
2a(ii)	Answer to include:	<u>1st Mark</u> : sodium atom loses electron to become sodium ion <u>2nd Mark</u> : sodium ion has two electron shells (2,8) but sodium atom has three electron shells (2,8,1)								
2b(i)	One answer from:	Outer electrons less strongly attracted to nucleusOuter electrons more shielded from nuclear pull as atom increases in size								
2b(ii)	Answer to include:	1st Mark: electron removed is being removed from a full outer shell or from an electron shell which is closer to nucleus2nd Mark: electron being removed by 2nd ionisation energy is more strongly attracted to nucleus (or less shielded)								
2c(i)	Any value between 720-770	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$								
2c(ii)	As ionic radii increases the lattice enthalpy decreases	Going down group 1 ($Li^* \rightarrow Na^* \rightarrow K^* \rightarrow Rb^*$) ionic radius increases and for both fluorides and chloride the lattice enthalpy decreases. The corresponding lattice enthalpies for each chloride and fluoride show that the chloride has a lower lattice enthalpy than the fluoride for the same metal ion.								

За	Covalent molecular	Phosphine PH_3 contains only non-metal atoms in the compound and will have covalent bonding as a result. PH_3 will have a molecular structure as it is a gas at room temperature.								
3b	1200	mol AlP = $(1\times27)+(1\times31) = 27+31 = 58g$ no. of mol = $\frac{mass}{gfm} = \frac{2900g}{58 g mol^{-1}} = 50mol$ AlP + 3H ₂ O \longrightarrow PH ₃ + Al(OH) ₃ 1mol 50mol Volume = no. of mol × Molar Volume = 50mol × 24 litres mol^{-1} = 1200 litres								
3с	H_P_P_H	hosphorus is in group 5, has a valency of 3 and makes three bonds. Hydrogen is in group 1, has a valency of 1 and makes one bond.								
4	Open Question Answer to Include:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved, making some some statement(s) which are relevant to the situation, showing that the problem is understood.Demonstrates a limited understanding of the chemistry involved, making some some statement(s) which are relevant to the situation, show 	'Y 1de ring is							
5α	glycerol or propane-1,2,3-triol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
5b(i)	polyunsaturated	general formula of saturated fatty acids = CnH2n+1COOH∴ saturated 18 carbon fatty acid will have formula C17H35COOHNo C=C bonds1x C=C bond2x C=C bonds3x C=C bondC17H35COOHC17H33COOHC17H35COOHC17H31COOHSaturatedMonosaturatedPolyunsaturatedPolyunsaturated	4							
5b(ii)	Octanoic acid	Caprylic acid contains 8 carbons, a carboxyl -COOH group and no C=C double bonds.								
5c(i)	Answer to include:	1st Mark: Bromine solution is added to both until the bromine is no longer decolourised. (or reddish-brown colour remains) 2nd Mark: more bromine would be added to olive oil as it is more unsaturated than coconut oil								
5c(ii)	Hexane is non-polar or water is polar	As oils are non-polar substances which do not dissolve in water ∴water (a polar solvent) is of no use as a solvent for oil. Hexane is a hydrocarbon, is non-polar and will dissolve oil								
5c(iii)	Answer to include:	<u>1st Mark: Coconut oil has more straight chains due to fewer double bor</u> while olive oil has more kinked chains due to more double bon <u>2nd Mark: London dispersion forces between coconut oil are stronger</u> than in olive oil	าds าds							

6a	hexapeptide	Pr	efix aning	Mono- 1	di- 2	Tri- 3	Tetra- 4	Penta- 5	Hexa- 6	Poly- many	
		isole	isoleucine leucine glycine valine serine							serine	
6b	Answer showing:	Overlapping fragments:									
00		isole	eucine	le le	ucine ucine	glyc	ine	valine			
		Amino acids	Amino acids which must be obtained by the body through the diet are								ire
60	essential	known as ess	nown as essential amino acids.								
6d(i)	One answer from:	Peptide only co four different acids	Peptide only contained An amino acid is four different amino acids An amino acid is repeated in the sequence (for that solvent) distance								nt amino the same ice
		Measured from From the Ques	n the di tion: R	iagram: s • value o [.]	olvent fr f methion	ont move iine: 0.40	ed: 4cm)			Īr	
6d(ii)	2 nd Spot from Top circled	∴ Distance by the Sul	$R_{f} = \frac{\text{Distance moved by the substance}}{\text{Maximum distance moved by the solvent}}$ $\therefore \text{ Distance moved}_{by \text{ the Substance}} = R_{f} \times \frac{\text{Maximum distance}}{\text{moved by the solvent}}$ $= 0.40 \times 4\text{cm}$								
6e(i)	One from:	H = C = OH = H = H = H = H = H = H = H = H =									
6e (ii)	30g	1kg adult 100mg lethal dose alpha-amanitin for humans 75kg adult 100mg lethal dose alpha-amanitin for humans x ⁷⁵ /1 = 7500mg alpha-amanitin 1.0g death cap mushroom 7500mg alpha-amanitin 1.0g death cap mushroom x ⁷⁵⁰⁰ /250									
			UV li	ght is	_ 00g u	S	unblocks	contain	free-	UVI	ight
-		damaging/harmful to skin					radical UV I	scavenge iaht can	ers	damages UV I	collagen iaht
/α	One answer from:	bonds/molecules in skin					cause skin cancer			ages skin	
		UV light creates tree radicals or UV light initiates free-radical chain reactions causes photo ageing						UV I causes s	ight sunburn		
7b(i)	Atom/molecule with	Free radical electron in t	are s he st	pecies ructure	(atoms e. This e	or mol electro	ecules) on is ver	which h y react	iave an ive and	unpaire will rec	d act with
		a variety of	other	chemi	cais to Rea	pair up ctants	this un	paired (Prod	on. ucts]
			Step		(befo No free	re Arrow) radicals	irrow) (after Arrow) dicals on Free radicals on				
7b(ii)	Initiation	Initiation			Left Hand Side Right Hand Side					-	
		Propagation Free radicals found on both sides of arrow Termination Free radicals on Left Hand Side No free radicals					ndicals on adicals on	-			
7b(iii)	Carboxyl group	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							C C ketone) —C group	

	2 carbons attached	Alcohol Description						
7b(iy)	to the Carbon with	Primary 1 carbon directly attached to the carbon with the -OH group						
	the -OH aroup	Tertiary 3 carbons directly attached to the carbon with the -OH group						
7c(i)	Diagram showing:	<u> </u>						
7c(ii)	To condense vapours which would evaporate	Both the reactants and the products in an esterification reaction are volatile and evaporate when in a hot water bath. The wet paper towel attached by an elastic band provides a cool glass surface in the inside of the test tube which will condense the vapours back to liquids and prevent their escape. These vapours are flammable.						
7c(iii)	60.7%	Imol ethanol $C_2H_5OH = 46g$ Imol ethyl ethanoate $C_2H_5COCH_3 = 88g$ no. of mol ethanol = $\frac{mass}{gfm} = \frac{2.5g}{46g mol^{-1}} = 0.0543mol$ ethanol + ethanoic acid \implies ethyl ethanoate + waterImolImol0.0543mol0.0543molethyl ethanoate mass = no. of mol × gfm = 0.0543mol × 88g = 4.78g (Theoretical)% Yield = $\frac{Actual}{Theoretical} \times 100 = \frac{2.9g}{4.78g} \times 100 = 60.7\%$						
7c(iv)	Condensation or esterification	Condensation reactions involve two molecules joining together to make a larger molecule with a small molecule (usually H2O) removed as they join. Esterification reactions are specific condensations where esters are made.						
8α	TemperaturePressureStep1HighLowStep1Lowhigh	Step 1 Forward Reaction is endothermic which decreases the temperature ∴ an increase in temperature will favour the forward reaction which increases the yield Forward Reaction increases the pressure (2mol of gas) ∴ a decrease in pressure will favour the forward reaction which increases the yield Step 2 Forward Reaction decreases the pressure (3mol of gas) ∴ an increase in temperature will favour the forward reaction which increases the yield Step 2 Forward Reaction decreases the pressure (3mol of gas) ∴ an increase in pressure will favour the forward reaction which increases the yield						
	2-methylpropene or	H—OCH ₃ OCH ₃						
8b(i)	H ₂ C = C - CH ₃ CH ₃	$H_{2}C \stackrel{+}{=} C - CH_{3} \longrightarrow H_{3}C - C - CH_{3}$ $CH_{3} \qquad CH_{3}$						
8b(ii)	One answer from:	The proportion of the total mass of all starting materials converted into the desired product is 100%All the atoms in the reactants are converted into the product you want or Mass of product equal to mass of reactantsNo by-products/no waste products/only one product is formed.						
8c	56	Bond Breaking StepsBond Forming Steps (exothermic) $3xC-H$ bonds $3x 412kJ = 1236kJ$ $2xC-H$ bonds $2x 412kJ = 824kJ$ $1xC-O$ bond $1x 360kJ = 360kJ$ $1xH-H$ bonds $1x 436kJ = 436kJ$ $1xO-H$ bonds $1x 463kJ = 463kJ$ $1xC=O$ bonds $1x 798kJ = 743kJ$ Total bond breaking $= 2059kJ$ Total bond Forming $= 2003kJ$ ΔH $=$ 2059 $ 2003$ ΔH $=$ 2059 $ 2003$ ΔH $=$ 2059 $ 2003$						
9 a(i)	4.92	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						
9a (ii)	To prevent heat loss to surroundings	Polystyrene is a poor conductor of heat (an insulator) and will help slow down the rate of heat loss to the surroundings.						
9a (iii)	52.5	1mol KOH = (1×39.1)+(1×16)+(1×1) = 39.1+16+1 = 56.1g 5.61g KOH releases 5.25kJ 56.1g KOH releases 52.5kJ mol ⁻¹						

Qh	-414	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
90		$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
10	Open Question Answer to Include:	3 mark answer2 mark answer1 mark answerDemonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a 							
11a (i)	A diagram showing:	Flask with long narrow neck and a single gradation mark which goes completely across (or is labelled) on the narrow neck.							
11a (ii)	Answer to include:	1st Mark: Accurate method for volume measurement e.g. uses a pipette or burette (syringe not accepted) 2nd Mark: Description of weighing by difference (or used Tare on a balance)							
11a (iii)	Line graph to include:	1^{st} Mark:All points plotted correctly ($\pm \frac{1}{2}$ box tolerance) 2^{nd} Mark:Best Fit Line							
11a (iv) Part A	Dissolved gas/bubbles will affect the density/mass/volume	The gas bubbles in the soft drink will alter the volume and the mass of the liquid being measured which will change the density.							
11a (iv) Part B	3.43%	Density of sugar in g cm ⁻³ = ($0.0204 \times$ %concentration of sugars in solution) + 1.00 1.07 = ($0.0204 \times$ %concentration of sugars in solution) + 1.00 1.07 - 1.00 = ($0.0204 \times$ %concentration of sugars in solution) 0.07 = 0.0204 × %concentration of sugars in solution $\frac{0.07}{0.0204}$ = %concentration of sugars in solution 2.432 m ⁻³							
11a(v)	34.98g	100cm³ contains 10.6g sugar 330cm³ contains 10.6g × ³³⁰ / ₁₀₀ = 34.98g							
11b(i)	-c	$ \begin{array}{ c c c c c } \hline & O & O & O & O \\ \hline & -O-H & -C-OH & -C-H & C-C-C \\ \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$							
11b(ii)	C ₆ H ₁₂ O ₆ + H ₂ O ↓ C ₆ H ₁₂ O ₇ + 2H ⁺ + 2e ⁻	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
11b(iii)	blue to orange/brick red	The final colours accepted: orange, red, brick red, brown, yellow or green							
11b(iv)	0.0099	no. of mol Cu^{2*} = volume × concentration = 0.0198litres × 0.0250mol I^{-1} = 0.000495mol $C_{6}H_{12}O_{6} + 2Cu^{2+} + H_{2}O \rightarrow C_{6}H_{12}O_{7} + 2Cu^{+} + 2H^{+}$ 1mol 2mol 0.0002475mol 0.000495mol concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{0.0002475\text{mol}}{0.025\text{litres}} = 0.0099 \text{ mol } I^{-1}$							
12a(i)	Hydrogen Bonding	Hydrogen bonds form between molecules containing -OH:Isomer12345678TypeCarboxylic AcidCarboxylic AcidCarboxylic AcidEsterEsterEsterEsterEsterHydrogen Bondingyesyesyesyesnononono							

		1 st Mark: More branching lowers boiling point							
12a(ii)	Answer to include	and an lu	The shorter the	The longer the	The n	learer the ester l	ink is to the		
1 C C (1)		2 nd Mark:	alcohol, the lower	carboxylic acid the	righ th	t hand end (ot the	e molecule) na point		
		Structures 1	itructures 1 2 and 3 show that increasing number of branches decreases the bailing point						
	Tomponatura batwaan	Structures 4, 5 and 6 show that increasing number of branches decreases the boiling point.							
12a(iii)	remperature between	Both comparisons above show that more branches lowers the boiling point.							
	99°C and 124°C	Boiling point must be greater than 98°C as it has less branches than structure 8 and must be less than							
		126°C as it has more branches than structure 7.							
		Реак	Structure	Chemical Environme	ent	Chemical Shi	ft (ppm)		
		0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			20-50			
12b(i)	200 180 160 140 120 100 80 60 40 20 0 Chemical shift (ppm)	0	-c				170-185		
		6	-0-C			50-90			
		9	H -C H H	H + + - - - - - - - - - - - - - - - - -		10-15			
			Structu	re	Peak	Chemical Environment	Chemical Shift (ppm)		
					0	H 0 + 1 H (- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	20-50		
		н—	н -с—н		0	o	170-185		
12b(ii)	5	н—	н -с—с—о-	он III –с—с—н	6	− − − − ↓ ↓ ↓	50-90		
		н—	 н -сн	 н	2x 4	H + + + - - - - - - - - - - - - - - - -	10-15		
			Н		6		25-35		